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Abstract —The Bragg reflection characteristics of millimeter waves in a

H-guide having a corrugated dielectric slab are investigated by the per-

turbation method of multiple scales. BriUouin diagrams in the vicinity of

the Bragg frequency of the TM-TM-, ‘I’E-TE-, and TM-TE-mode cou-

plings are shown. Validity of the theoretical predictions are confirmed by

experiments carried out in the 40-50-GH2 region. Typical frequency

response at the stopband resulting from TM-TM-mode coupling is stop

bandwidth about 380 MHz, with return loss about 2.1 dB at the Bragg

frequency 47.3 GHz.

I. INTRODUCTION

Periodic structures in the form of periodic grooves in the

surface of the dielectric structure have found widespread use in

millimeter-wave integration applications such as band-reject filters

[1], [2] and distributed Bragg reflector oscillators [3]. In such

applications, the gratings would be operated in their stopbands,

corresponding to Bragg reflection, in order to produce strong

reflections.

Up to the present, a number of theoretical studies of waves in

periodic structures have been presented in the literature. Among

them a singular perturbation procedure which was proposed by

Nayfeh [4], Asfar and Nayfeh [5], and Seshadri [6] is found to be

an effective method. With the procedure, the authors have studied

the electromagnetic wave interactions in a surface-corrugated

dielectric slab [2] and shown that the numerical results agree well

with experimental data.

In this short paper, the electromagnetic wave interactions in a

H-guide [7], [8] having a surface-corrugated dielectric slab are

studied. The method of analysis based on the perturbation method

of multiple scales [4]–[6] is employed. The dispersion characteri-

stics around the Bragg interaction region of the TM–TM-, TE–TE-,

and TM–TE-mode couplings as a function of slab width are

determined and compared with the experimental data performed

in the 40–50-GHz range.

H. THEORETICAL CONSIDERATION

Geometry of a corrugated H-guide is shown in Fig. 1 [7], [8].

The dielectric slab occupying the regions – b/2 < y < b/2 and

— a/2 < z < z(x) between two parallel metaf plates has the top

boundary surface z = Z( x) that varies sinusoidally in the x direc-

tion. If the surface undulation is assumed to be small with
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Fig 1 Geometry of a corrugated H-guide and the system of coordinates for
the anafysis.

parameter rS, the boundtu-y surface along z (x) can be defined as

z(x) =;(l+8qcos Kx) (1)

where q and 2 rr/K = A are the modulation index and the spatial
penodicity of the undulation, respectively. We shall consider only
guided waves that propagate in the x direction and having the
time dependence exp (jot), where a is the wave angular
frequency.

There are two types of hybrid modes, classified as the TMj~
and TEj~ modes where the subscripts p and q indicate the

number of extrema of the field in the y arid z directions, respec-

tively, that the H-guide cart support [8]. Fig. 2(a) shows the

dispersion diagrams of the lowest order of these modes for the

case of slab thickness a = 3.16 mm, width b = 3.80 mm, and

relative dielectric constant c,= 2.0. Withottt periodic corruga-

tions on a surface of the slab, the forward (n = O) and backward

(n= – 1) TMZ and TE’ modes propagate independently along

the guide. When weak sinusoidal corrugations are presented, an

incident TM= (or TE’ ) wave will not only produce a transmitted

and a reflected TM’ (or TEZ) wave but also excite a transmitted

and a reflected TE’ (or TM’) wave. As a consequence of these

mode conversion effects the first-order coupling of TMZ –TM=,

TE’ –TE’, and TM’ –TE’ modes will take place at the intersec-

tion points A, B and C, D, respectively. Such mode conversion

effects have recently been observed in the periodically-corrugated

dielectric waveguide of finite width such as rectangukw dielectric

image guide [9]. To study the characteristics of wave interactions

in the vicinity of the interaction points A to D, analysis by the

perturbation method of multiple scales is employed.

In terms of scalar potentials ~h and @ewhich define the TM=

and TE’ modes, it is possible to write electric field and magnetic

field as follows [10]:

E = Jpoco(r@ + V( v .iql- jq.Lov x Ay

M = jmtocrv x 2r@+ r-fpoq-fr~$b=+ v(v.2#1’). (2)
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Fig. 2. (a) Zeroth-order dispersion diagrams for slab thickness a = 3.16 mm
and width b = 3.80 mm. (b) The first-order stopband characteristics in the
Yicirrity of the interaction points A, B, C, and D for the index of undulation
q = 0.102. The solid curve is the real part and the dashed curve is the

imaginary part of wavenumber ~,.

The scalar potentials ~h and $’ satisfy the wave equation

V2+’ + L!& fo<r+’ = o, i=h, e. (3)

In the above expressions v = 2d/8x + ~8/tly + .28/8z and c,
is the relative dielectric constant of the slab. Following the
singular perturbation procedure using the method of multiple
scales [4]–[6], we introduce art expansion of Q around Bragg

frequency 00 as

U=uo+lh,. (4)

Perturbation expansions of the wave potentials # and the fields E
and R-Uin a series of 8 are carried out in the form

F(x, y,z)=Fo(xo, x,, y,z)+8F, (xo, x,, y,z) (5)

where FOrepresents the unperturbed zeroth-order quantities @h,
E~, and U-U~, and F, represents the perturbed first-order quantities

o’1, E 1, ~d ~ i. The chain tie of differentiation wi~ respect tO x
yields

-&=~+a=L
ax. ax,

(6)

At the air-dielectric interfaces of z = z(x) and z = – a/2, the

required boundary conditions are obtained from the continuity of
tangential components of the electric and magnetic field as

(7)
~ + dz(x)E =Eo+ dz(x)Eo ~ _Ho

x dxzxdxz’?–y

WX)HO ~y=E:,dz(x)H=H:+T ,,
HX+T , Z= Z(X) (8)

and

EX=E:, Hy=HOY (9)

HX=H:, EY=E:, /z=–~ 2 (lo)

where dz ( x )/dx is the gradient of the surface corrugation which
can be determined from (1), and the superscript zero on the fields
denotes the fields in the air region. To determine the boundary
conditions for the zeroth-order and the first-order of 8, we first
expand the tangential components of the electric and magnetic
field in (7)-(10) with the help of (2), (4), (5), and (6) and then
carry out Taylor series expansions around z = a/2 up to linear
term in 8 of the fields in (7) and (8). After equating the coeffi-
cients of equal powers of 8, the zeroth-order and the first-order
boundary conditions in terms of ~~ and G’, along z = ~ a/2 can

be obtained.

The derivation of the coupled-mode equations that govern the
nature of the first-order Bragg interaction of TM’ –TMZ waves
will be performed first. Since the TEZ modes are nonresonant
with the forward and backward TMZ modes at the interaction
point A, we shall take the zeroth-order fields belonging to the
TEZ modes (o:) equal to zero. Substituting (4)-(6) into (3) and
equating the coefficients of equal powers of 8, the zeroth- and
first-order differential equations for &, o!, and @$can be ob-
tained. Substituting the solutions of the zeroth-order differential
equation satisfied by & into the zeroth-order boundary condi-
tions calculated from (7)–(10), the zeroth-order dispersion rela-
tion describing the dispersion curves of the TM’ mode in Fig.
2(a) is obtained [7], [8]

tan(kha/2) = Crak/kk (11)

where

~
ah= fl~+kj-ti2pc kh = U:pococr – ~: – k;

and

ky=pr/b, p = 1 for the fundamental mode.

The forward and backward TM’ modes couple to each other at
the intersection point A where the Bragg condition or resonant
condition

/lh = K/2 = r/A (12)

is satisfied. The value of frequency corresponding to the intersec-
tion point is the Bragg frequency. For the zeroth-order unper-
turbation problem, it is seen that TM’-mode fields alone satisfy
the zeroth-order boundary conditions. But for the first-order
boundary perturbation problem, it should be noted that a super-
position of the TM’- and TEZ-mode fields is required for the
satisfaction of the first-order boundary conditions. This is be-
cause the perturbations in the bound~ sprface of the slab dso

produce modes of TEZ wave when the waveguide excitation is
only TM=; however, these TE’ modes are of order of 8 and do
not resonate with the TMZ mode at the interaction point A. As a
result of this nonresonant coupling, the first-order fields of the
TE’ modes (+:) must be taken into account.

When solutions of Ogand O: ( = O) are known, the solutions for
$! and Of can be obtained from the first-order differential
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equations. Substituting +:, O;, and +; into the first-order

boundary conditions calculated from (7)–( 10), and using or-

thogonality of Floquet modes, the coupled-mode equations

governing the nature of the interaction between the forward and

backward lowest order TMZ modes can be deduced as

( )L A; ‘?fc+-A;
“ –Jv: ax,

(

.—

)

~ A; =qc-+A:
“ ‘Jog ax,

where

(13)

is the group velocity, and c+ –, c– + are the coupling coefficients

given by

+ (Era;+ k;)]

A J and A{ are the amplitudes of the forward and backward

TMZ modes, respectively. The coupled-mode equations that

govern the nature of the first-order Bragg interaction of the

TEZ –TE= modes and the TM’ –TE’ modes can be derived in the

same manner and only the results are listed below. The form of

coupled-mode equations are given by (13) but with the following

conditions.

a) For TE’ –TE’ coupling (at point 1?)

and

+ (cra: + k:)]

(14)

A ~ and A; represent the forward and backward TE’-wave

amplitudes, respectively. The wavenumber ~, satisfies the zeroth-

order dispersion relation for TEZ mode [8]

tan(kea/2) = aJk,.

b) For TM=-TE= coupling (at point C)

~=oh —

% g’ Vg
= v;

(15)

A J and A; represent the amplitudes of the forward TMZ and the
backward TE’ wave, respectively.

c) For TM= –TE’ coupling (at point D)

+=ue — h
% g’ % = Vg

c ●–=_ceh and C-h= – Che. (16]

A; and A; represent the amplitudes of the forward TE’ and the

backward TM’ wave, respectively.

For a special case when the slab width is extended to infinity

on both sides, i.e., b ~ co, itis interesting to note that (13) with
k, ~ () correctly reduce to the same coupled-mode equations of

the TM wave as given in [2]. Also, when ky ~ O, (15) and (16)

show that Che = Ceh= O, and that the TM= –TEZ coupling appears

only for finite slab width, which agrees with that discussed by

Shiau et al. [9].

If the amplitude A; has the form of A~ =AJexp(– J3[xl)

where A J is a constant, the first-order dispersion relation can be

deduced from the coupled-mode equations. Estimating numeri-

cally the first-order dispersion relation for TM= –TM’, TEZ –TEZ,

and TM’ –TEZ couplings, the Brillouin diagrams near the interac-

tion points A, B, C, and D are shown in Fig. 2(b). The numerical

value of parameters are given in the figure, and /3, and ~1 are,

respectively, the perturbed propagation constant and frequency

from the unperturbed values (/30, j,) at the intersection point.

From Fig. 2(b) it is seen that, within the stopband region, the real

part of the wavenumber in the case of TMZ –TEZ coupling varies

linearly with frequency, while in the case of TM’ -TMZ or

TE’ –TE2 coupling it remains a constant at its zeroth-order value.

The variation of the Bragg frequency ~. and the stop bandwidth

Af on the slab width for three types of couplings are plotted in

Fig. 3. It is seen that the Bragg frequency of the three different

couplings decreases with increasing the slab width. The stop

bandwidth of the TM= -TM’ and the TMZ –TEZ couplings also

decreases as the slab width increases. But the stop bandwidth of

the TE’ –TEZ coupling increases with the slab width after it

vanishes once at b = 3.50 mm. The vanishing value of the stop

bandwidth at b = 3.50 mm shows that there exists the Brewster

phenomenon in the TE2 -TEZ coupling. From Fig. 3 it is noted

that the stop bandwidth due to TMZ–TEZ coupling is slightly

narrower than that of the TM= –TM= coupling.

In practice, the periodic structure is restricted within a fiuite

length, assuming from x = O to x = L in the direction of wave

propagation. Solving the coupled-mode equations (13) subject to

the phenomenological boundary condition that backward wave

amplitude A; (x = L) = O, the complex reflection coefficient R

can be deduced [6]. Fig. 4 shows the value of R resulting from

TM’ -TM’-mode coupling as a function of frequency in the

vicinity of the Bragg frequency for the number of elements in the

surface corrugation N = 70. For c,= 2.0, a = 3.16 mm, b = 3.80

mm, and q = 0.102, it can be estimated from Fig. 4 that the

half-power bandwidth is about 385 MHz and return loss is about

1.81 dB. Only the reflection coefficient for TM’ –TM’-mode

coupling is considered because this case is available for the

experiment described later.
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III. EXPERIMENTAL RESULTS AND DISCUSSIONS

In order to demonstrate the validity of the theoretical predic-

tions described in the previous section, experiments on the reflec-

tion characteristics have been performed in the millimeter-wave

region. The H-guide tested consists of two parallel 10X 26 cm2

copper plates and a Teflon slab with relative dielectric constant

c,= 2.0. Dimensions of the slab are thickness 3.16 mm, width

3.80 mm, and length 340 mm. One surface of the slab is corru-

gated with rectangular grooves by milling machine to form a

periodic surface undulation in the propagation direction. The

width, depth, and periodieity of the groove and the number of

corrugations are 1.50 mm, 0.26 mm, 3.50 ~mm, and N = 70,

respectively. When estimating from the Fourier series expansion

of the shape of the corrugations, the value of the modulation

index q used in the computation is found to be 0.102.
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Fig. 5. Bragg reflection measurement setup.

Fig. 6. Typicaf messured reflection characteristics of the millimeter wave
from a cc,rrugated H-guide when TM~l mode is excited.

The experimental setup is shown in Fig. 5. The millimeter-wave

power sweeping in the frequency range 40–50 GHz is fed to the

H-guide through an electromagnetic horn antenna. Since the

principal field components of the TM= mode are E= and 17Y,

the guide is set iu the position that the copper plates plane is m

parallel to the E-plane of the horn antema, which is in turn

coupled directly to the WRI-500 waveguide (TE,0 mode) to excite

the TMZ mode. The slab has tapered transition sections at the

front end which is inserted into the horn, antenna to gradually

shape the field ]pattem of the TE,0 mode at the rectangular

waveguide end to the field of the TMfl mode at the H-guide end,

and also at the far end to avoid unwanted reflection. Bragg

reflections causedl by the interaction of the lowest mode of TM’

wave are detected. through a directional coupler and are recorded

by X- Y recorder or oscilloscope. Fig. 6 shows the photograph of

the typical measured reflection characteristics from the corru-

gated H-guide at stopband. The bandwidth of the stopband as

measured is about 380 MHz, with return loss about 2.1 dB at the

Bragg frequency 47.3 GHz. Since the waves in the corrugated

H-guide are excited and detected through the rectangular wave-

guide which operates in the TEIO mode where the amplitude of

the transverse electric field (E=) is maximum at the center of the

waveguide, it should be noted that only the TM~l mode in the

H-guide, which has similar field distribution and polarization to

the TEIO mode, can be excited and detected. The TE:l mode

having E,= O ancl zero transverse electric field (Ey) at the center

of the guide then cannot be excited or detected through rectartgu-

lar waveguide. Due to the difference in polarization and trans-

verse field distribution mentioned above, measurements on the

Bragg reflection due to TM~l –TE~,-mode coupling when TM~l

mode is excited as well as TEfl –TE~l-mode coupling are rmavail-

able in the present experimental setup shown in Fig. 5. A method

for measurement of a reflected signal caused by TM–TE-mode

coupling when only TM mode is excited in a corrugated H-guide,

by opening a thin slit in the metal plate perpendicular to direc-

tion of propagation and measuring a reflected signal associated
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with the TE mode at the slit by a probe, has been reported in

[11].

To make qualitative comparison of the theory with experi-

ments, we have repeated the experiments on the Bragg reflection

of TM~l mode from corrugated H-guide for several slab widths

between 3.52 mm and 5.55 mm, while the other dimensions are

kept constant. In the experiment, the copper plates are kept

parallel at the given spacing equal to the slab width by the

screws. Since it is very difficult to adjust the screws to keep the

space between the plates accurately equal throughout the length

of the guide, the measured stopband responses are slightly af-

fected. Fig. 7(a) and (b) shows the plots of Bragg frequencyjO

and the return loss and half-power bandwidth A f as a function of

slab width of the measured and computed results, The computed

results shown by the solid curves are obtained from the reflection

coefficient of Fig. 4. From these figures it is seen that the

measured Bragg frequencies agree well with the computed ones.

The agreement of both return loss and half-power bandwidth is

also good for narrow slab width (smaller than b = 4.40 mm). As

the slab width increases, the difference between the measured and

the predicted data is evident. The measured return losses are

higher while the measured half-power bandwidths are lower than

the computed results. These discrepancies seem to arise mainly

from the use of phenomenological boundary conditions described

in the preceding section. This is so because the reflection coeffi-

cient for the finite periodic structure is derived under the assump-

tion that the variation of the fields in the transverse (y and z)

direction are the same for both outside and inside the grating

region, and the fields are matched only at the center portion of

the slab (one-dimensional boundary value problem [2], [6]). The

theory is limited to be accurate for narrow slab width. Another

source of discrepancies seems to arise from the mismatching

effects at the transition section between the rectangular wave-

guide and the tested waveguide. Since the dimensions of the

rectangular waveguide and horn antenna are unchanged, widen-

ing the slab width should cause additional reflected power from

the tapered section of the tested waveguide.

IV. CONCLUSIONS

The electromagnetic wave interactions in a corrugated H-guide

have been investigated theoretically and experimentally. By a

singular perturbation procedure, the dispersion and the reflection

characteristics in the vicinity of the Bragg frequency of the

TM–TM-, TE–TE-, and TM–TE-mode couplings were derived.

Numerical results for the reflection coefficients caused by

TM–TM-mode coupling for several slab widths have been com-

pared with the experiments in the millimeter-wave frequency. The

agreement was found to be good only for narrow dielectric slab

widths. The sources of discrepancies between theory and experi-

ment for wide slab widths were btiefly discussed.

The low-loss properties and the simple structure of the corru-

gated H-guide may be useful for applications in millimeter-wave

integrated circuits as a band-reject filter, as well as in a high Q

(over 200) resonator if a large slab width or double-corrugated

dielectric slab is used.
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